<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=ISO-8859-1">
<META content="MSHTML 6.00.2900.2802" name=GENERATOR></HEAD>
<BODY id=role_body style="FONT-SIZE: 10pt; COLOR: #000000; FONT-FAMILY: =
Arial"
bottomMargin=7 leftMargin=7 topMargin=7 rightMargin=7><FONT id=rol=
e_document
face=Arial color=#000000 size=2>
<DIV>
<DIV>In a message dated 2/19/2006 3:15:56 P.M. Pacific Standard Time,
sec@overspianos.com.au writes:</DIV>
<BLOCKQUOTE
style="PADDING-LEFT: 5px; MARGIN-LEFT: 5px; BORDER-LEFT: blue 2px solid"><=
FONT
  style="BACKGROUND-COLOR: transparent" face=Arial color=#000000
  size=2>Richard,<BR><BR>The downbearing (vector) force on the sound board=

  <BR>is equal to the SIN of the angle of deflection <BR>times the string
  tension.<BR><BR>If there was absolutely no down bearing angle, it <BR>foll=
ows
  that there would be no downbearing force. <BR>The SIN of zero is zero so t=
he
  string tension <BR>vector component force would be zero.<BR><BR>If the dow=
n
  bearing angle was 90 degrees, with <BR>the speaking length segment paralle=
l to
  the board <BR>and the back scale heading vertically downwards, <BR>the dow=
n
  bearing force would be equal to the <BR>string tension, ie. the speaking
  length segment <BR>would be contributing nothing to the down bearing
  <BR>force, while the back scale segment would be <BR>contributing its full=

  string tension. The SIN of <BR>90 equals 1.0. String tension X 1.0 equals
  string <BR>tension. You can see how it all works.<BR><BR>So if you have 16=
0
  lbs unison string tension with <BR>a downbearing angle of 2 degrees, the
  downbearing <BR>vector force for this unison string would be;<BR><BR>&nbsp=
;
  &nbsp; Downbearing = 160*Sin2.0<BR><BR>&nbsp; &nbsp; Downbearing =5.58=
3
  lbs<BR><BR>The downbearing force for the whole note would be <BR>3 X 5.583=
 if
  the note was a trichord, at 16.75 lb.<BR><BR>If you are using an excel
  spreadsheet for your <BR>calculations, remember that the downbearing angle=

  <BR>will need to be converted to radians.<BR><BR>Yes, there is a large
  variation in what people <BR>believe is an appropriate level of downbearin=
g.
  <BR>If you measure a few pianos around the place <BR>you'll find that ther=
e is
  a lot of variation in <BR>the downbearing angle also.<BR><BR>The 2 degree
  figure you quoted I would consider <BR>to be too high for a real world pia=
no.
  <BR>Bösendorfer have typically set their pianos with <BR>angles approach=
ing 2
  degrees strung. This is a <BR>little higher than I would feel comfortable
  with. <BR>When Ron N was here a couple of years ago we <BR>looked at our n=
o. 5
  with a Lowel gauge and it <BR>measured almost right on 1.3 degrees over th=
e
  <BR>whole piano. This yields a total downbearing <BR>force on our no. 5 of=
 427
  Kg (941 lb). I wouldn't <BR>recommend these figures for an older or weaker=

  <BR>panel but it works just fine for our I-rib <BR>design. Setting the
  downbearing angle is a <BR>balancing act between how much the board will
  <BR>sink and how much force we wish to apply.<BR><BR>When looking at a giv=
en
  piano, I suggest that you <BR>set up a spreadsheet to calculate the
  downbearing <BR>force you are planning to set up per rib. Note <BR>also th=
at
  setting an unstrung angle of say 1.5 <BR>degrees won't result in a downbea=
ring
  force of <BR>tension X SIN(1.5). Its the resultant string <BR>deflection a=
ngle
  when the piano is at pitch and <BR>the board has stabilised (sunken to
  equilibrium) <BR>under load which will determine the actual <BR>downbearin=
g
  force. So you need to make an <BR>educated prediction on how much a board =
will
  sink <BR>under tension to get an idea of the resultant <BR>downbearing
  force.<BR><BR>A common scenario with new pianos is for techs to <BR>measur=
e a
  down bearing figure which on the face <BR>of it looks OK, but very often t=
he
  sound board <BR>has sunken to a state where it is pushed almost <BR>comple=
tely
  flat by the down bearing angle which <BR>was set into the piano. In these
  instances the <BR>board is too weak for downbearing loads which are <BR>be=
ing
  applied or the unstrung angle wasn't set <BR>properly. Either the downbear=
ing
  unstrung angle <BR>should be reduced or the board strengthened to
  <BR>withstand the setting angles to which it is being <BR>asked to resist.=
 So
  often technicians will look <BR>at a sound board and declare that it is fi=
ne
  <BR>because the downbearing angle measures some <BR>wonderful figure. But =
if
  the board has been <BR>pushed inside out before the customer's ink is <BR>=
dry
  on the cheque, things ain't too good, <BR>regardless of what the downbeari=
ng
  gauge might <BR>indicate.<BR><BR>Get an accurate downbearing gauge and a
  thread <BR>length for looking at crown, and measure a few <BR>pianos old a=
nd
  new. You'll develop a picture of <BR>what's happening.<BR><BR>Ron
O</FONT></BLOCKQUOTE></DIV>
<DIV></DIV>
<DIV>&nbsp;</DIV></FONT></BODY></HTML>