Friction Weight=(D-U)/2

Richard Moody remoody@easnet.net
Thu, 16 Dec 1999 00:59:36 -0600


Hi David, 
	Thanks for the reply. Thanks for the explainations! The importhant thing
is to keep records.   So however the data is interpreted it is always
there for other analysis.    ---ric  

----------
> From: David C. Stanwood <Stanwood@tiac.net>
> To: pianotech@ptg.org
> Subject: Friction Weight=(D-U)/2
> Date: Monday, December 13, 1999 10:45 AM
> 
> Fri, 10 Dec 1999 "Richard Moody" <remoody@easnet.net> Wrote:
> 
> >Also I wonder why a simple differnce between DW and UW can't be used.
At
> >least for friction reducing attempts.   I think it (the difference) is
> >divided by two because levers are involved, but at the keyboard the
first
> >"reading" is the actual difference.  Why have to mentally divide that
by
> >two and remember that also? So would it be wrong to say? "since FW of
10
> >is acceptible, then a diff of DW and UW of 20 is acceptable but getting
up
> >there."   
> 
> Dear Richard,
> 
> I'll start a new subject on this because your focusing on a point that
is
> important to understand in itself.
> 
> Why not make an action that has no friction!  Ball bearing knuckles,
ball
> bearings in the hammer and wip centers, ball bearing heel cushion, and
ball
> bearing key pivots and guides.  (Of course these would have to be dry
ball
> bearings so as not to cause any extra drag)  
> 
> Now we measure down weight and it turns out to be 35.001 grams and the
up
> weight is 34.999 grams.  But since we normally measure up weight and
down
> weight to the nearest gram these figures both round out to 35 grams.  So
> with no friction, Up Weight and Down Weight are the same.
> 
> Now let's spray mist the ball bearings with a mixture of 80% water and
20%
> alcohol.
> get that water right into those bearing with a liberal soaking!  Let
stand
> for one full day do allow for full rust development.
> 
> Now remeasure Down Weight and we find it has increased by 13 grams.  It
was
> 35 grams, now it's 48 grams.  13 grams is the additional weight needed
to
> overcome the friction in the rusty bearings.  That's why it's called
> Friction Weight.  Now we measure Up Weight and we find that it has
> decreased by 13 grams as a result of the friction in the rusty bearings
and
> now measures 22 grams.
> 
> So this 13 grams is called "Friction Weight" and in the real world we
find
> it as:
> (D-U)/2.
> 
> As you can see in this case, referring to friction as 26 grams doesn't
> really tell you the effect of friction on either Up or Down Weight until
> you divide by two.
> 
> Also, the 35 grams in this case,  is referred to as "Balance Weight" and
is
> found as: (D-U)/2
> 
> In defense of these terms I have to take exception with the comments by
> Mark Abbott Stern in his December 1999 Journal Article "Touchweight &
> Friction"
> 
> He his introduction he states: 
> 
> "The hardest part will be giving up the belief in a widely accepted
> statement: "One half the difference between down weight and up weight is
> the friction of that note." Not entirely true. Repeat --- not true.
> Friction is certainly a part of that value, but there's more to it;
there
> is a portion that cannot be reduced by all the lubricants in the world."

> 
> He seems to imply that, by using all the lubricants in the world, we
have
> eliminated friction and since there is still a difference between up and
> down weight, it must be from some other cause. He goes on to make the
case
> that force vectors are the cause of it. 
> 
> My take on this is that if we reduce friction as much as we can (and
this
> is not necessarily desirable) there is still plenty enough friction
> leftover to cause a difference between up weight and down weight.  
> 
> If we TRULY eliminated friction (Ball bearings) there would be one
weight
> placed on the front of the key that would cause it to become balanced. 
The
> slightest amount added or subtracted to that weight would cause the key
to
> move down or up irregardless of the force vectors within the action.
> 
> David Stanwood
> 


This PTG archive page provided courtesy of Moy Piano Service, LLC